
Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

184

A DIFFERENTIAL EVOLUTION ALGORITHM PARALLEL

IMPLEMENTATION IN A GPU

1LAGUNA-SÁNCHEZ G. A., 2OLGUÍN-CARBAJAL M., 3CRUZ-CORTÉS N.,
4BARRÓN-FERNÁNDEZ R. AND 5CADENA MARTÍNEZ R.

1
Universidad Autónoma Metropolitana, UAM

2,3,4
Instituto Politécnico Nacional, Department of postgraduated, IPN

5
Universidad Tecnológica de México, UNITEC

E-mail:
1
glaguna@xanum.uam.mx,

2
molguinc@ipn.mx,

4
rbarron@cic.ipn.mx, 5rocadmar@mail.unitec.mx

ABSTRACT

The computational power of a Graphics Processing Unit (GPU), relative to a single CPU, presents a

promising alternative to write parallel codes in an efficient and economical way. Differential Evolution

(DE) algorithm is a global optimization based on bio-inspired heuristic. DE has a good performance, low

computational complexity and need few parameters. This article presents parallel implementation of this

population-based heuristic, implemented on a NVIDIA GPU device with multi-thread support and using

CUDA as the model of parallel programming for these case. Our goal is to give some insights about GPU’s

parallel programming by a simple and almost straightforward parallel code, and compare the performance

of DE algorithm running on a multithreading GPU. This work shows that with a parallel code and a

NVIDIA GPU not only the execution time is reduced but also the convergence behavior to the global

optimum may be changed in a significant manner with respect the original sequential code.

Keywords: Multithreading, Parallel Programming, GPU, Differential Evolution And Fine Grain.

1. INTRODUCTION

Today, the idea of exploiting the computational

power available in the PC’s graphic cards in order

to solve general purpose problems [1] and the

general-purpose GPU (GPGPU) processing concept

are current topics. Both manufacturers and

developers have considered this new computing

application as a promising research area,

considering the wide range of possible applications

that can take advantage of the parallelism available

in the current low price GPUs.

Since parallelization of some bio-inspired

algorithms is viewed as a natural consequence of

their population-based feature, recently it was

shown in [2] that it is possible to reach a significant

speedup for Particle Swarm Optimization (PSO)

algorithm when it is parallelized and executed on a

multithreading GPU, after a simple and almost

straightforward parallel programming style

supported by the CUDA programming tool [3]. In

[2] the authors showed that the best performance

was reached when the execution of the whole PSO

algorithm was delegated to the GPU following an

approach similar to that known as diffusion within

the parallel programming community [4]. In that

work the authors called their parallel

implementation embedded because in the diffusion

approach there is one processor per individual but

in the proposed model there is one thread instead of

one processor per individual.

Bio-inspired techniques such as Evolutionary

Computing [5], Ant Colony Optimization [6] and

Differential Evolution (DE) [3] were proposed as

alternatives to solve difficult optimization problems

obtaining acceptable solutions in a reasonable time.

Since these techniques work with a population of

individuals, they simultaneously test different

solutions based on specific rules and underlying

stochastic processes. These heuristic techniques

have been applied in practically all fields of

knowledge, obtaining a good performance, even

running on common personal computers.

In this paper a parallel version DE algorithm for

a multi-threading GPU is presented and the

performance of such parallelized version are

compared and reported as a continuation of the

earlier research work in [2]. The DE algorithm was

chosen since it is very popular for optimization

purposes and new versions are emerging

continuously as microDE [7] [8],

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

185

Adaptive DE [9] and DE with Thresheld

Convergence [10] among many others. The

computational power provided by the GPU results

in a natural speedup but shows that, additionally,

the proposed parallel implantation have different

behavior, compared to sequential one, as a result of

the specific way in which the random numbers are

generated within GPU.

This work is organized as follows. Section II

presents a brief overview of related work. Section

III presents an introduction to GPU architecture.

Section IV offers a brief description of the DE

algorithm. Section V presents practical

considerations of our parallel implementation.

Section VI reports experimental results. Finally, in

Section VII we draw our conclusions.

2. RELATED WORK

Parallel programming usually involves

migration of an existing sequential code towards

concurrent, parallel or distributed architectures.

Concerning population-based algorithms (like

Genetic algorithms, PSO, DE, etc.), once they were

presented, there were attempts to take advantage of

its natural parallelism, or example, the works of

Cantú-Paz [4] and J.F. Schutte [11]. In specialized

literature we can find proposals based on traditional

concurrent processes, running in just one processor,

but most parallel implementations are usually

designed to be executed in distributed systems (i.e.

several processors in a network). In all these

distributed systems, the communication overhead

among different processors is a factor that consider

ably affects the performance of the parallel

implementation. So far, interest in parallelization of

population-based algorithms is still topical, which

is shown by some recent research works that

propose diverse parallel implementations of these

kind of bio-inspired heuristics in order to solve very

complex optimization problems (see [12] and [5]).

Regarding parallelization of population-

based algorithms on GPUs, the first proposals were

focused on Genetic Programming (see [13]) and in

some cases the resulting experiences were applied

later to parallelization of other population-based

algorithms, like in [14]. Recently, in [2] the authors

proposed exploiting the advantages of a NVIDIA

multithreading GPU and CUDA programming tool

for parallelization of a PSO algorithm in a simple

and straightforward way. This work presents a first

empirical study comparing sequential DE algorithm

against they parallel variant running on a

multithreading GPU.

3. INTRODUCTION TO GPUS AND
MULTITHREADING
ARCHITECTURE

 The modern GPUs have their foundation

on the vectorial processor architecture, which

supports the execution of mathematical operations

on multiple data in a simultaneous way. In contrast,

the original CPU processors cannot handle more

than one operation at the same time. Originally, the

vectorial processors were commonly used in

scientific computers [15], but later they were

displaced by multi-nucleus architectures.

Nevertheless, the vectorial processors were not

completely eliminated, since many computer

graphics architectures and the modern GPUs are

essentially inspired by them.

3.1 CUDA architecture

CUDA programming tool is modeled by a single

instruction multiple thread (SIMT) approach where

multiple threads are executed on many data

elements. CUDA allows programmers to write

parallel code using standard C language with

NVIDIA extensions. CUDA organizes parallelism

in a hierarchal system of three levels: grid, block,

and thread. The process begins when the host

(CPU) invokes a GPU device function called

kernel, then a grid of multiple thread blocks is

created in order to be distributed to available

multiprocessors. CUDA programs launch parallel

kernels with the following extend function-call

syntax:

kernel<<<dimGrid,dimBlock>>> (parameter list);

where dimGrid and dimBlock are specialized

parameters that specify the dimensions of the

parallel processing grid, in blocks, and the

dimensions of the blocks, in threads, respectively.

During kernel execution, threads have access to

five types of GPU memories, depending on a

defined hierarchy or access levels (see Fig. 1):

• Global memory, a read/write memory located on

GPU board.

• Constant memory, a read cached memory located

on GPU board.

• Local memory, a per-thread read/write memory

located on GPU board.

• Shared memory, a per-block read/write memory

located on GPU chip.

• Register memory, the fastest per-thread read/write

memory located on GPU chip.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

186

Fig. 1. Memory Hierarchy Of NVIDIA GPU [3]

Shared memory and registers are the fastest but

limited in size because they are on-chip memory.

On the other hand, device memory (Local, Global

and Constant are on-board memory) are large but

are accessed with high latency compared with on-

chip memory. Since the multiprocessor executes

threads in 32 parallel thread groups, called warps,

the global memory can be efficiently accessed by

threads in half-warp by simultaneous memory

read/write coalesced into a single memory

transaction of 32, 64, or 128 bytes [3].

4. OVERVIEW OF DIFFERENTIAL
EVOLUTION ALGORITHM

DE algorithm is a population-based algorithm that

have attracted the attention of many researchers.

Although DE general structure is very similar to

other population based algorithms(initialization,

fitness evaluation, comparison and updating

blocks), DE uses a unique rules for offspring

generation, comparison and updating. In a general

sense in DE strategy the individuals form teams of

just three individuals in order to create a new

individual (using a kind of recombination and

mutations operators) that tries to improve the

current population’s best individual. From the No

Free Lunch Theorem [16] we know that using a

limited set of benchmark functions does not

guarantee that an algorithm that performs well on

them will be well comported in a different set of

problems. In fact it is known that each heuristic is

competitive in specific kinds of problems. So our

goal is to give some insights about DE algorithm

exploit potential regards the GPU to potentiality

reduce the convergence time, based on the type of

problem and the dependence of execution time as a

function of the individuals or iterations number.

4.1. Differential Evolution Algorithm (DE)

 The main idea emerged when Price and Storm [17]

proposed to use vector differences to disturb

population vectors to fit parameters for Chevichev

polynomials. Differential Evolution (DE) is a bio-

inspired optimization heuristic and population-

based algorithm that uses mutation, crossover, and

selection operators, to evolve individuals. DE basic

idea relies on generation of test and trial vectors. In

DE is found a vector:

 xi,G = 0, 1, 2, ..., Np (1)

 as a tentative solution to the problem. Where Np

does not change during the algorithm execution.

The population is constructed with all xi,G vectors

from 1 to n:

 PG = {x(1,G), ...x(n,G)} n ∈ [1, Np] (2)

Storn and Price highlighted variants for the DE

algorithm.

 The different schemes for naming DE variants,

DE/x/y/z where:

 1) DE denotes a Differential Evolution Algorithm.

 2) x is the mechanism to select a vector Xr1 .

 3) y is the number of weighted difference vectors F

(Xr2− Xr3) used to perturb Xr1.

 4) z is the crossover scheme.

For this work it uses DE/rand/1/bin, this refers to a

Differential Evolution with a random selected

vector (rand) using one weighted difference vector

and a binomial crossover scheme. The crossover

operator works by mixing components of the

current and mutated elements to construct an

offspring.

DE has two main crossover variants, binomial and

exponential. DE can have different mutation

probabilities depending of the crossover variant

implemented; this will be reflected on the DE

behavior [18].

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

187

DE population evolves by using three operators:

mutation, crossover and selection.

 The mutation operator used was as follows:

 vG = xr0,G + F × (xr1 ,G − xr2,G), (3)

with r0, r1 , r2 ∈ [1, Np], r0 = r1 = r2

were r0, r1, r2 are random selected individuals, and

r2 is used for the base vector xr2,G. F is a used as a

factor that controls the difference between vectors.

This means that for each xi,G in the population, a

noisy vector v is generated.

 The crossover operator is applied on the noisy

vector vG and the population vectors, obtaining a

trial vector ui,G , for i ∈ [1, Np]. The vector

 u = (u0 , u1, ..., uD−1)

(4)

 with

where CR ∈ [0, 1] is a crossover constant for the

new vector ui,G generation; j = 1, 2, ..., n; Rj is a

random number of a uniform random number

generator in [0,1]. Samples were renewed for every

component of the trial vector v, while rk ∈ [1, Np]

is the random uniform individual index, and xi,G ∈

[1, Np] is a population selected individual.

 In the selection step, the trial vector ui,G is

compared with the actual xi,G selected parent. The

one with the best fitness passes to the next

generation, see Eq. 6:

 From Eq. 3 can be seen that, in order to allow the

application of the mutation operator, a DE

algorithm must have at least 4 individuals. Finally,

it is important to remark that for different kinds of

problems, in order to obtain better results, it is

convenient to have specific and fixed algorithm’s

parameters [19].

 5. PARALLEL IMPLEMENTATION WITH
CUDA

Concerning parallelization models for population-

based algorithms, the parallel classification

suggested for Evolutionary Algorithms in [20] as

global approach, migratory approach,and diffusion

approach was firstly considered as starting point

reference at the beginning of the research [2]. In

that work was shown that a convenient and

straightforward way for parallelization of

population-based algorithms, in a multi-threading

GPU, is a kind of diffusion implementation where

there is a GPU thread by each individual, in such a

way that single individual’s fitness evaluation and

individual’s update are executed by a single GPU

thread while the comparisons among the

individuals are carried out within GPU after a

convenient threads synchronization. Such

implementation is called Embedded by the authors,

since most of functional blocks, except

initialization one, are delegated to GPU. Thus,

embedded approach was chosen as programming

model for the parallel implementation of DE

algorithm on the NVIDIA GeForce 8600GT GPU.

 DE heuristic described in Algorithm 1 were

parallelized by mean of a programming strategy

that consists in the creation of one thread for each

individual and a kernel call in order to execute the

code’s body of a given population-based

Fig. 2. Structure Of DE Sequential Algorithm

algorithm. Thus, while in the sequential code each

particle movement is updated particle by particle,

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

188

within GPU all particles updating is executed in a

concurrent way. CUDA programming tool allows

programmer to launch a kernel and creating a block

of independent threads that represent the population

and individuals, respectively. Specifically, a CUDA

program includes the following steps:

1) Allocate memory on the GPU device.

2) Copy data from host (CPU) into GPU

memory.

3) Host invokes kernel function.

4) GPU executes the code.

5) Copy the output results back from GPU

memory into host memory.

 The following functional blocks can be observed in

such metaheuristic:

• Population initialization. It initializes

population’s individuals in a random form.

 • Fitness function evaluation.

 • Comparison. It determines if an individual

has better fitness that the best registered.

 • Updating. Every individual updates its

fitness following the specific algorithm rules.

 Fig. 3 Depicts The General Structure Of Sequential DE

Algorithm.

 Intentionally, in order to illustrate the

straightforward parallelization of the code, the

sequential functional blocks have been reorganized

highlighting the loops that are in terms of the

individuals number. Note that in the sequential

implementation (see Fig. 2) all the functional

blocks are necessarily executed on the host

processor. By contrast, in our parallel

implementation, called embedded, only the

initialization module remains running on the host

processor (see Fig. 3), since the kernel callis

associated with the whole optimizing process that

include fitness evaluation, comparison, and

updating modules, all of them running on the GPU

by mean of multiple threads (one by each

individual), until a termination condition is reached.

Concerning the initialization module, the

initialization of each of the individual’s seeds (one

seed per thread), used for generation of random

numbers, is carried out on the host and remained

out of the GPU. The above condition guarantees a

good quality generation of random numbers into

GPU for each thread and results, as is shown in the

experimental results, in a different convergence

behavior relative to the sequential algorithms. At

this point, we must remark that the generation of

random numbers was implemented in a different

way for sequential and parallel codes, because it

was particularly difficult to generate different

random numbers within GPU when a single seed is

used. Then, sequential codes kept the traditional

way to generate random numbers based on a single

seed, while the parallel codes used too many seeds

as individuals in population as will be described

further.

In Fig. 3 we can see that the

device_xx_eval_comp_upd<<>>() kernel is invoked, where

xx can be DE, depending on the implemented

algorithm. For example, for our DE parallel

implementation, firstly we declare an application

Class that represents DE population. Then the

principal optimization function is defined.

 As is showed, the host can invoke the kernel

function by mean of the wrapping function

wrap_GPU_DE_Optimization(), that is defined

within a CUDA file (in our case

pde_emb_kernel.cu).

 The kernel function is defined in the same CUDA

file. Note that this code is parallelized in multiple

threads, as many as individuals, which are

distinguished by mean of a thread’sunique ID

defined by blockId and threadId global structures

assigned at runtime by the system [3]. In this code

the fitness evaluation process is directly related to

the objective function evaluation, for example for

Generalized Griewank’s (F03).

We must remark some practical considerations that

should be taken into account to achieve functional

implementation in parallelization of population-

based algorithms on a multi-threading GPU:

 • Overhead. The GPU presents an overhead due to

latency in memory transferences between the host

and GPU device. Because these transferences are

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

189

relatively slow, any parallel implementation on a

GPU must minimize their employment.

 • Synchronization. Before any decision is taken,

for example during the comparison and updating

process, all the running threads must be

synchronized in that point in order to obtain reliable

information. Since in population based heuristics

the individuals share information.

• Contention. This problem may occur if global

variables are simultaneously revised by several

threads. Appropriate precautions must be

incorporated to deal with this problem. Specifically

in the DE algorithm, this situation happens with the

variable that contains the index to the global best.

• Generation of random numbers. This process

may become a problem if the random numbers are

generated within the GPU without an adequate

strategy for the initialization of the seeds. Any call

to the rand() function running on the GPU must

generate different numbers for each thread and in

any call. If the above condition is not provided, it

could result in a no converging algorithm because

of the poor diversity. In our parallel implementation

one seed per individual (i.e. one seed per thread) is

created and initialized by the host, and later each

thread itself generates random number and updates

its seed by mean (defined in pde_emb_kernel.cu, in

our case file) but updates the seed after each call.

6. EXPERIMENTS AND RESULTS

The experiments were conduced on a PC with

processor Intel Core Duo with Linux operating

system, which is called host processor. The GPU is

a graphic card NVIDIA GeForce 8600GT, with 256

Mbytes of work memory and 4 multiprocessors,

each one integrated by 8 cores, which represents a

total of 32 processing cores. These processing cores

were programmed by means of the CUDA

environment that allowed us to write parallel code

fort he NVIDIA GPU in an almost straightforward

way, as was described in the above section.

6.1 Experimental procedure

 The goal of our experiments is assessing the

performance of our parallel implementation for DE

, comparing it against the sequential DE version.

The performance of DE algorithm was measured

for a set of four well-known benchmark functions

[17], varying both iterations and individuals

number during the optimization of each objective

function. Four multimodal functions were selected

since they present significant optimization

complexity [15]:

All of these objective functions are multimodal, but

F01 and F03 are separable functions while F02 and

F04 are non separable ones, understanding that

separable functions can be written as linear

combinations of functions of individual variables.

 The following two experiments were carried out to

measure the performance of the parallel

implementation:

 •Experiment 1. For DE parallel implementation,

performance measurements varying the iterations

number. While the iterations number was variable

(1000 to 31000, in steps of 2000 iterations), and the

individuals were fixed to 128. The goal of this

experiment is to compare the convergence curve

and consumed time of the parallel algorithm against

the sequential one in terms of the iterations number.

• Experiment 2. For DE parallel implementation,

performance measurements varying the individuals

number. While the individuals number was variable

(64, 128 to 1024, in steps of 128 individuals), and

the iterations were fixed to 15000. The goal of this

experiment is to compare the convergence curve

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

190

and consumed time of the parallel algorithm against

the sequential version in terms of the individuals

number. Note that in this experiment, individuals

number was increased in multiples of 64, which

results in the fact that our parallel implementations

one in thread is created by each individual and

because NVIDIA recommends the construction of

threads blocks with size been multiple of 64, in

order to better exploit the GPU resources [3].

For Algorithm 1, a DE/rand/1/bin algorithm was

selected, parameter F was fixed at 0.6 for all the

tested functions, while parameter CR was fixed

depending on the function, as is recommended in

[17]: 0.9 for F01 and F03 (non separable functions),

but 0.0 for F02 and F04 (separable functions).

 Each experiment was repeated 30 times for each

benchmark function. Thus the average solution

(specifically, the function valuation), its standard

deviation, and the averaged consumed time in

seconds was registered for each of the tested

functions.

6.2 Performance metrics for parallel processing

Traditionally, to assess the performance of parallel

implementations, the following metrics are defined:

• Computational cost and

• Speedup.

Computational cost C is defined as the processing

time (in seconds) that a given algorithm consumes.

Then computational throughput T is defined as the

inverse of the computational cost:

 T = 1/C

Speedup S measures the reached execution time

improvement and express how fast the parallel

implementation is, compared with the

implementation of reference:

 S= Ttarg / Tref

where Ttarg is the throughput of parallel

implementation under study, and Tref is the

throughput of the sequential implementation in our

case.

6.3 Experimental results

Because the goal is to compare the performance of

DE parallel implementations running on the GPU

the experimental results were registered for both

algorithms (sequential and parallel) and for each

tested function. In this section the observed

behaviors for DE implementation, after varying

iterations and individuals number, are commented.

Since it is well known that the convergence quality

of a given population-based algorithm, during an

optimization process, typically is very sensitive to

its specific parameters (either CR and F for DE)

and on the problem itself (i.e. objective function),

determining were DE algorithm has a better

convergence for each kind of problem is out of the

scope of this work. Regardless DE convergence

respect to a particular function, it is more

interesting in determinate the effect of code

parallelization itself and also the effect of varying

individuals and iterations number on both the cost

(i.e. consumed time) and the general shape of

convergence curve.

All tested functions have an optimum value at zero

except for F04. In order to have comparable plots,

the plot of F04 was adjusted by just adding the

optimum value (12569.4866 with 30 dimensions) to

show a convergence curve referred to zero value.

6.3.1 Results of experiment 1: Experimental

results varying iterations number, fixing individuals

to 128, are plotted in Figures 4 to 9. In Fig. 4 we

can see that, during F01 optimization, sequential

(abbreviated as seq.) Parallel implementation of DE

algorithm (emb. as short for embedded) has the best

convergence compared with sequential one. The

parallel DE algorithm converge first to the optimum

around 3000 iterations, followed by sequential DE.

Fig. 4. Convergence For F01 Optimization Fixing

Individuals To 128 And Varying Iterations

During F02 optimization, parallel implementation

of DE algorithm has the best convergence, see Fig.

5. For this case, sequential implementation have a

worse convergence compared with the parallel one.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

191

Fig. 5. Convergence For F02 Optimization Fixing

Individuals To 128 And Varying Iterations

In Fig. 6 we can see that, during F03 optimization,

parallel implementation of DE were trapped in a

better local optimum than sequential

implementation that is trapped in local optimums

far from the global optimum.

Fig. 6. Convergence For F03 Optimization Fixing

Individuals To 128 And Varying Iterations

In Fig. 7 we can see that, during F04 optimization,

parallel implementation of DE algorithm is trapped

in a local optimum closer to the global optimum

compared with the other sequential one, that are

trapped in local optimums far from the global one.

Specifically, F04 proved to be a hard optimization

problem for all tested algorithms.

Fig. 7. Convergence For F04 Optimization Fixing

Individuals To 128 And Varying Iterations

Concerning consumed time and reached speedup

varying the iterations number, the experimental

results are very similar for all the tested functions.

For example, in Fig. 8 and Fig. 9 we can see the

consumed time and speedup for F03 optimization.

Fig. 8. Cost For F03 Optimization Fixing Individuals To

128 And Varying Iterations

Fig. 9. Speedup For F03 Optimization Fixing Individuals

To 128 And Varying Iterations

We can see a natural speedup introduced by the

GPU that is almost invariant to variations in

iterations number. The reached speedups with 128

individuals are very modest (2 for emb. DE), firstly

because we fixed the population to allow value of

128 (it was observed that, in the proposed parallel

implementations, the GPU improves the speedup

when increasing the individuals number [2]) and,

secondly, because in the proposed implementations

are not exploited shared memory, coalesced

memory instructions neither parallelizing arithmetic

operations.

6.3.2 Results of experiment 2: Experimental

results varying individuals number and fixing

iterations to 15000 (after observing the

convergence curves of Experiment 1 and observing

that 15000 iterations gives the opportunity to reach

a stable solution, either local or global optimum)

are plotted in Figures 10 to 15. In Fig. 10, again, we

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

192

can see that during F01 optimization parallel DE

has the best convergence. On the other hand,

sequential DE algorithm show an impoverishment

as individuals are increased. In this case it is very

interesting to note the opposite behaviors of parallel

DE algorithm.

Fig. 10. Convergence For F01 Optimization Fixing

Iterations To 15000 And Varying Individuals

In Fig. 11 again we can see that, during F02

optimization, parallel implementation of DE

algorithm has the best convergence.

In this case, also sequential implementation has a

worse convergence compared with the parallel one,

but sequential DE has the slowest convergence. In

Fig. 12 we can see that, during F03 optimization,

parallel implementation of DE algorithm is trapped

in a better local optimum than sequential

implementation that is trapped in local optimums

far from the global optimum. In Fig. 13 again we

can note that, during F04 optimization, parallel

implementation of DE algorithm is trapped in a

local optimum closer to the global optimum

compared with the other sequential and parallel

ones, that are trapped in local optimums far from

the global one.

Fig. 11. Convergence For F02 Optimization Fixing

Iterations To 15000 And Varying Individuals

Fig. 12. Convergence For F03 Optimization Fixing

Iterations To 15000 And Varying Individuals

Fig. 13. Convergence For F04 Optimization Fixing

Iterations To 15000 And Varying Individuals

Concerning consumed time and reached speedup

varying the individuals number, the experimental

results are very similar for all the tested functions.

For example, in Fig. 14 and Fig. 15 we can see the

consumed time and speedup for F03 optimization.

In the proposed parallel implementation, at the

beginning the GPU improves the speedup when the

individuals are increased, but after a given point the

speedup become almost constant. In fact, as the

individuals are increased, the speedups are

stabilized around five for DE algorithm, but these

value can be improved as was described above.

6.4 Discussion of results

The above experiments confirmed that in the

proposed parallel implementation the reached

speedup is increased specifically when the

individuals number is increased. According to the

proposed implementation, this behavior is justified

by the fact that increasing the individuals results in

increasing the executed threads, and that give more

chance to the GPU to make a better resource

administration [3]. On the other hand, increasing

the iterations simply forces the GPU to repeat more

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

193

times the same processes. Thus, it is more useful to

analyze the convergence curve and consumed time

of the parallel implementations while the

individuals number is varied than when the

iterations number is varied. Concerning speedup,

within the considered range, it must be clarified that

the relatively modest values reported here may be

improved with a more efficient code (by intensive

use of shared memory, exploiting coalesced

memory instructions and parallelizing arithmetic

operations).

Fig. 14. Cost For F03 Optimization Fixing Iterations To

15000 And Varying Individuals

Fig. 15. Speedup For F03 Optimization Fixing Iterations

To 15000 And Varying Individuals

Based on the fact that the proposed parallel

algorithms are essentially the sequential ones after

being migrated to GPU in a straightforward form,

we can say that parallel algorithms and sequential

ones are practically identical in all their functional

modules with exception of the generation of the

random numbers. In this sense, it is very interesting

to note that the effect after a parallelization of a

given heuristic on a GPU results in a natural

speedup but additionally affects the convergence

behavior in a significant manner. In our case this

change in the convergence behavior is mainly

because the different ways in which the random

numbers are generated in parallel implementation

with respect sequential ones. Since in the proposed

parallelization the generation of random numbers

into GPU is carried out in a truly and independently

parallel way, individual by individual, the intrinsic

behavior of the parallel implementation is different

to the sequential one.

In general, the best performance was reached by the

parallel DE algorithm during the optimization of all

the tested functions. It is very interesting to note the

change of convergence behavior between the

sequential and parallel implementation of (i.e. DE).

These experimental results show that with a parallel

code and a NVIDIA GPU not only the execution

time is reduced but also the convergence behavior

to the global optimum may be changed in a

significant manner with respect the original

sequential code. Specifically, it imply that having a

sequential algorithm that performs well on a given

benchmark function does not guarantee that the

same algorithm within a parallelized variant will be

well behaved in the same problem and also imply,

in counterpart, that having a sequential algorithm

that performs badly on a given benchmark function

does not guarantee that the same algorithm within a

parallelized variant will be badly behaved in the

same problem (as is clear in Fig. 11 and Fig. 12 for

DE when optimizes F02 and F03).

7. CONCLUSION AND FUTURE WORK

In this paper, a parallel version of DE algorithm, is

implemented on a multithreading GPU using

CUDA as the model of parallel programming, were

presented. Some insights about the proposed

parallel implementation for population-based

algorithms on a GPU were given. Specifically, an

approach called embedded, where there is one

thread per individual, was used. It must be noted

that the proposed approach is not strictly any of the

well known parallel models (global, island, nor

diffusion) traditionally used in these cases, but is

similar to the diffusion one but there is one thread

instead of one processor per individual. Regardless

the natural speedup introduced by the GPU, it is

shown that the proposed parallel implantations may

have different behavior, compared to sequential

ones, as a result of the specific way in which the

random numbers are generated within GPU.

The experimental results showed that parallel DE

algorithm has a better behavior optimizing the most

of our set of well know benchmark functions, with

significant dimensionality of 30 and algorithm’s

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

194

parameters specified. It is notable that DE, using

the appropriate values for CR and F parameters that

depend on the problem, may converge to the global

optimum with few particles as 64 and few iterations

as 3000.

Future research may be focused on the following

three points:

(1) Apply the whole multithreading GPU

capacities, including intensive use of shared

memory, exploiting coalesced memory instructions

and parallelizing arithmetic operations, to get a

powerful high parallelized DE algorithm.

(2) Test more fitness functions with bigger

dimensionality.

(3) Employ these parallel problem Algorithms to a

complex real world optimization.

REFERENCES

[1] Owens, J.D. and Luebke,D. and Govindaraju, N.

and Harris, M. And Kr ̈uger, J. and Lefohn,

A.E. and Purcell, T.J., “A Survey of General

purpose Computation on Graphics

Hardware”, Computer Graphics Forum, 2007

[2] Laguna-Sánchez G., Olguín-Carbajal M., Cruz-

Cortés N., Barrón Fernández R. and Alvarez-

Cedillo J., “Comparative Study of Parallel

Variants for a Particle Swarm Optimization

Algorithm Implemented on a Multithreading

GPU”, Journal of Applied Research and

Technology (JART), 2009

[3] NVIDIA Corporation, “CUDA Computer Unified

Device Architecture Programming Guide”,

Version 6.5, PG-02829-001 v6.5 2014

[4] E. Cantú-Paz, “Efficient and Accurate Parallel

Genetic Algorithms”, Kluwer, 2000

[5] Eiben, A.E. and Smith, J.E., “Introduction to

Evolutionary Computing”, Natural

Computing Series, Springer, 2003

[6] Liaoa T., Stutzlea T., Montes de Oca M. A.,

Dorigo M. 2A United Ant Colony

Optimization Algorithm for Continuous

Optimization”. IRIDIA, Universite Libre de

Bruxelles. IRIDIA Technical Report Series,

Technical Report No.TR/IRIDIA/2013-002,

ISSN 1781-3794., 2013

[7] Olguín-Carbajal M., Herrera Lozada J.C.,

Arellano Verdejo J., Barron Fernandez R. and

Taud H., “Micro Differential Evolution

Performance Empirical Study for High

Dimensional Optimization Problems”,

Lecture Notes in Computer Science LNCS

8353, Springer 2014

[8] Olguin-Carbajal M., Alba E. and Arellano

Verdejo J., “Micro Differential Evolution with

local search for High Dimensional

Problems”, 2013 IEEE Congress on

Evolutionary Computation, 2013

[9] Mukeherjee R., Debchoudhury S., kundu R., Das

S. and Suganthan P.N., “Adaptive Differential

Evolution with locality Based Crossover for

Dynamic Optimization”, 2013 IEEE Congress

on Evolutionary Computation, 2013

[10] Boloufe Rohler A., Estevez Velarde S., Piad

Morffis A. Chen S. And Montgomery J,

“Differential Evolution with Thresheld

Convergence”, 2013 IEEE Congress on

Evolutionary Computation, 2013

[11] Schutte, J.F. and Reinbolt, J.A. and Fregly, B.J.

and Haftka, R.T. and George, A.D., “Parallel

Global Optimization with the Particle Swarm

Algorithm”, International Journal for

Numerical Methods in Engineering, 2003

[12] Ma, H.M. and Ye, C.M. and Zhang S.,

“Research on Parallel Particle Swarm

Optimization Algorithm Based on Cultural

Evolution for the Multi-level Capacitated Lot-

sizing Problem”, IEEE Control and Decision

Conference, 2008

[13] Harding, S. and Banzhaf, W., “Fast Genetic

Programming on GPUs”, 10th European

Conference on Genetic Programming, Lecture

Notes in Computer Science, Editor Ebner, M.

2007

[14] Li, J.M. and Wang, X.J. and He, R.S. and Chi,

Z.X., “An Efficient Fine-grained Parallel

Particle Swarm Optimization Method Based

on GPU-acceleration”, International Journal

of Innovative Computing, Information and

Control, 2007

[15] Mzoughi, A. and Lafontaine, O. and Litaize, D.,

“Performance of the Vectorial Processor

VECSM2* Using Serial Multiport Memory”,

10
th

 International Conference on

Supercomputing, 1996

[16] Wolpert, D.H. and Macready, W.G., “No Free

Lunch Theorems for Optimization”, IEEE

Transactions on Evolutionary Computation,

1997

[17] Storn, R. and Price, K.V., “Differential

Evolution a simple and efficient heuristic for

global optimization over continuous spaces”,

Journal of Global Optimization, 1997

[18] Swagatam Das and Ponnuthurai Nagaratnam

Suganthan, “Differential Evolution: A Survey

of the State-of-the-Art”, in IEEE Transactions

on Evolutionary Computation, Vol. 15, No. 1,

February 2011.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

195

[19] Mezura-Montes, E. and Velázquez-Reyes, J.

and Coello-Coello, C.A., “A Comparative

Study of Differential Evolution Variants for

Global Optimization”, GECCO, 2004

[20] Belal, M. and El-Ghazawi, P., “Parallel Models

for Particle Swarm Optimizers”, International

Journal of Intelligent Computing and

Information Sciences, IJICIS, 2004

