Mapping of spin wave propagation in a one-dimensional magnonic cristal

dc.audience researchers es_MX
dc.contributor.author Cesar Leonardo Ordonez-Romero, 0000-0002-0096-2125
dc.contributor.author Boris Kalinikos, 0000-0003-4968-1225
dc.contributor.author Zorayda Lazcano, 0000-0003-2970-1268
dc.contributor.other Drozdovskii, Andrey
dc.contributor.other Aguilar Huerta, Melisa
dc.contributor.other Domínguez Juárez, J.L.
dc.contributor.other López Maldonado, Guillermo
dc.contributor.other Qureshi, Naser
dc.contributor.other Kolokoltsev, Oleg
dc.contributor.other Monsivais, Guillermo
dc.coverage US es_MX
dc.date.accessioned 2018-06-26T04:55:42Z
dc.date.available 2018-06-26T04:55:42Z
dc.date.issued 2016
dc.description The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap. es_MX
dc.format application/pdf es_MX
dc.identificador.materia 1 es_MX
dc.identifier.other http://dx.doi.org/10.1063/1.4958903
dc.identifier.uri http://hdl.handle.net/20.500.12222/142
dc.language eng es_MX
dc.publisher American Institute of Physics es_MX
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional *
dc.rights.license info:eu-repo/semantics/restrictedAccess es_MX
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ es_MX
dc.source.other Journal of Applied Physics (4) vol.120 (2016) es_MX
dc.source.other ISSN: 0021-8979 es_MX
dc.subject CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA es_MX
dc.subject.keywords Ondas espín es_MX
dc.subject.keywords Cristal magnónico es_MX
dc.subject.keywords Mapeo es_MX
dc.subject.keywords Propagación es_MX
dc.subject.keywords Superficies Magnetostáticas es_MX
dc.subject.keywords Microondas es_MX
dc.subject.keywords Osciloscopio es_MX
dc.subject.keywords Sistemas de ondas es_MX
dc.title Mapping of spin wave propagation in a one-dimensional magnonic cristal es_MX
dc.type article es_MX
dc.type.version info:eu-repo/semantics/publishedVersion es_MX
Files
Original bundle
Now showing 1 - 2 of 2
Thumbnail Image
Name:
000018.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
Description:
7 páginas
No Thumbnail Available
Name:
000018.xml
Size:
1.87 MB
Format:
Extensible Markup Language
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: